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A method to handle slanted perfectly conducting boundaries in electromagnetic particle 
simulation codes is described. Modifications to standard algorithms for the electromagnetic 
field advance, charge and current densities, particle destruction, and field averaging are 
discussed. In addition, a new model for field emission from conducting boundary surfaces is 
described. Particles can be emitted from conformal or slanted surfaces, and also from certain 
types of corners. Results of the new models on several problems involving slanted surfaces are 
presented. 0 1991 Academic Press, Inc. 

I. INTRODUCTION 

Particle-in-cell (PIC) plasma simulation codes are a powerful tool in advancing 
our understanding of intense, pulsed-power devices. One of the most difficult 
problems encountered using a PIC code to simulate such a system is the treatment 
of conducting boundaries and field emission surfaces; many devices have com- 
plicated boundary shapes that need to be modeled accurately. The most elegant 
solution to this problem is to use a non-orthogonal mesh that conforms to the 
required geometry. Mainly because of difficulties designing a particle handler on 
such a mesh, it is only recently that success with such methods have been reported 
[ 1, 21. However, most current relativistic electromagnetic PIC codes use an 
orthogonal grid (often restricted only to Cartesian coordinates) and require that 
conducting boundaries be conformal to one of the coordinates. With such codes, 
the only method of simulating a complex boundary shape is to use the closest 
“stair-step” approximation with conformal segments. On a stair-step surface, the 
electric field is distorted in both magnitude (enhanced at the outer corners and 
diminished at the inner corners) and direction (since the tangential component 
must vanish at each face of the corner). Furthermore, these problems carry over to 
the field emission of particles. More charge is created at the outer corners, and the 
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particles follow trajectories determined by the distorted electric field. Although 
these errors may not affect some of the gross operating characteristics of a device, 
the behavior close to such surfaces may be quite different from the actual slanted 
surface being modeled. 

This paper describes a method for handling slanted conducting surfaces in an 
orthogonal mesh code. The method restricts slanted surfaces to those connecting 
opposite corners of the electromagnetic cell, so it has limited capabilities in com- 
parison with a true body-fitted mesh code. However, the great advantage of this 
scheme is that it can be added relatively easily to an existing orthogonal mesh code, 
upgrading its ability to simulate complex geometries for a fraction of the effort 
required to switch to a non-orthogonal grid. This method has been implemented in 
the 2$D relativistic electromagnetic PIC code MAGIC [3]. In addition to slanted 
conducting surfaces, a new field emission model is also described. This model not 
only supports field emission from conformal and slanted surfaces, but also from 
certain types of corners. All cells in an emission surface are treated collectively to 
ensure that the magnitude of the particle charges produce exactly the right amount 
of charge in each cell, accounting for the area weighting overlap of created particles 
into adjacent cells. 
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FIG. 1. A section of the spatial grid used for the electromagneticfields. XI are the “full grid points,” 
and xf are the “half grid points” in the x-direction, and y/ and yf are the full and half grid points 
in the y-direction. The nonuniformity of the grid is greatly exaggerated for illustrative purposes. A 
conducting surface connects the vertices (xi- ,, y!+ ,), (x;‘, y,‘+ ,), and (xi+, , y{), with outward pointing 
normal as shown. 
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The organization of this paper is as follows. In Section II, we discuss the treat- 
ment of vacuum cells and conformal conducting boundaries. This section defines 
the notation used and sets the stage for the discussion of slanted surfaces. In 
Section III, the modifications made to the code for slanted surfaces are described 
(excluding the particle emission model). In Section IV, a description of the new field 
emission model is presented. Results of simulations performed with the new code 
are discussed in Section V. Finally, in Section VI, we summarize the principal 
results. SI units are used throughout this paper, except where noted. 

Two simplifications should be noted in this paper. First, in the interest of 
notational clarity, the discussion is restricted to Cartesian coordinates. MAGIC 
handles four different orthogonal coordinate systems-Cartesian, cylindrical z - r, 
cylindrical r - 4, and spherical r - 8. Generalization to the z - r system is straight- 
forward. However, the treatment of the other coordinate systems involves some 
complications (since the metric tensor coefficients are no longer constants) and is 
still under development. Second, all discussion of slanted surfaces will be restricted 
to the orientation shown in Fig. 1, in which both x and y components of the normal 
vector are positive. Extension to slanted surfaces with normals in the other three 
quadrants is straightforward. 

II. TREATMENT OFVACUUM CELLS AND CONFORMAL CONDUCTING BOUNDARIES 

The spatial grid used for the finite-difference approximation to Maxwell’s equa- 
tions is shown in Fig. 1. Nonuniform grid spacings can be defined to allow better 
spatial resolution of spatially inhomogeneous quantities with fewer grid points [4]. 
The “full” and “half” grid points in the x-direction are computed by a mapping 
from a uniform grid cj = iS[, using an arbitrary smooth function g,; x{= g,([,) and 
x: = g,(ii+ i,*). This means that x: is not necessarily exactly midway between x{ 
and x{+ r . The full and half grid points in the y-direction, y/ and y$‘, are similarly 
defined. The staggering of the locations of the field definitions permit simple second- 
order finite-difference approximations to spatial derivatives to be defined in the 
usual way [S]. In referring to this grid, we define “full grid point (i, j)” to be the 
actual point (x{, $), “full grid cell (i, j)” to be the cell with xlf<x < x{+ i and 
y!<y<yf 
32 

, + , , and “charge density cell (i, j)” to be the cell with xhP 1 Q x < xf and 
yj- I< y < yj”. 

Conducting surfaces are defined with vertices at full grid points, together with the 
direction of the outward pointing normal to orient the surface, as shown in Fig. 1. 
Slanted surfaces must connect opposite corners of the full grid cell, as shown in the 
lower right corner of Fig. 1. As pointed out in the Introduction, we will only discuss 
the treatment for this slanted surface orientation. Two complications arise on a 
nonuniform grid. First, it is possible for a slanted surface connecting opposite ver- 
tices of a full grid cell to miss the grid point near the center of the cell at which B, 
is defined. This only affects the special boundary computation of B, and will be 
described later; the particle-handling algorithms are unaffected. Second, the slope of 
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the surface can change from one full grid cell to the next. Although this complicates 
the coding required to implement the algorithms to be discussed, it also provides 
the ability to generate piecewise linear approximations to curved surfaces. 

Next, we consider the charge density calculation. Since the charge density can 
vary greatly in time in systems simulated with MAGIC, the simulation particles 
have variable weights. All particles of the same species have the same charge to 
mass ratio, but each particle is explicitly assigned its own charge qp. This can be 
viewed as explicitly defining how many real particles each simulation particle 
represents. For a particle located at xz = (xi, yz) in full grid cell (i, j) at time level 
n, we define the linear weighting fractions ’ ’ 

In a vacuum cell, the charge density is accumulated using standard bilinear area Yi’+l 3 2 

FIG. 2. Charge density weighting for particle p. located in full grid cell (& j): (a) Rectangular area 
weighting used in vacuum cells. The fraction of the particle’s charge assigned to corner n is proportional 
to the area of rectangle A,,. (b) Triangular area weighting used in slanted surface cells. The fraction of 
the particle’s charge assigned to corner n is proportional to the area of triangle A,. 
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weighting. We divide up the area of the full grid cell into four subrectangles, based 
on the particle’s location, as shown in Fig. 2a. The fraction of the particle charge 
assigned to the charge density grid point at each corner is proportional to the area 
of the sub-rectangle opposite that point. These fractions are 

(2) 

w;i+,,+,=w;.:w;.!? . . 
At all other grid points (i’, j’), w;,;.,. = 0. The charge density at (i’, j’) due to 
particle p is 

To push the particles, fields are interpolated from the full grid points to the particle 
using the same weighting factors 

F,=C , w; ij.Fiy,. (4) 
i', j' 

We also need the current density to advance the electric field. A major complica- 
tion of an electromagnetic PIC code is computing a current density that conserves 
charge 

MAGIC uses a current density algorithm that satisfies charge conservation exactly, 
to within machine roundoff error. This algorithm is essentially the “method A” of 
Ref. [6]. The details of this calculation are quite involved [7], and we simply sum- 
marize the results here. First note that for motion confined to a single cell, 6p/6t 

is non-zero only at the four corners of that cell, so one would expect to satisfy con- 
tinuity everywhere using only the four current densities on the edges of the cell. In 
fact, since C 6pJ6t = 0, there are only three independent equations, and so we have 
a one parameter family of solutions for these current densities. Two special solu- 
tions can be constructed from physical considerations. Consider motion of a par- 
ticle from xi to x1+ ’ within a single cell, as shown in Fig. 3. We approximate the 
actual particle’s path with one of the two rectangular paths shown. For illustrative 
purposes, we will assume this to be path 1, where the y-direction is traversed first. 
As the particle traverses the segment parallel to the y-axis, the y-component of the 
current is 

z;; I’* = qp( y; + l - yZ)/&. (6) 
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FIG. 3. Current density calculation for motion confined to a single cell. The particle’s path from xi 
to xi+’ is approximate’d by one of the two rectangular paths shown. This motion contributes to the 
current densities only on the four edges of cell. 

This current is shared between J;l,t ‘I* and J;,::f j, using a transverse weighting 
factor that depends on the x-location of the path. Along the chosen path, we assign 
W ;-; of the current to J;,; “* and the remaining wz,’ to J;,:,!‘fj. Dividing by the cell 
volumes, the current density contributions are 

(7) 

The x-component of the current is treated similarly, except that the transverse 
weighting factors are w;>T ‘3 +, since the x-motion is made at y;’ ’ on the chosen 
path. These current density components are 

Jt,‘, 112 = qp wp? 
)I + 1. - (w;,t 1. + _ w;,: ) 

6t sy,” ’ 

J;,;+& =qpwp~ 
n+L+(W;,f’.+ -w;=) 

dt dy,h+, . 

(8) 

It is straightforward to verify that these current densities do in fact satisfy Eq. (5) 
at all points. If the other path is chosen, the only difference is that the transverse 
weights for J.v are w;,’ ‘, *, and those for J, are w;.F. Any weighted average of these 
two solutions is also a solution. In MAGIC, one or the other is chosen randomly. 
For particles making cell transitions, we exploit the linearity of the continuity equa- 
tion by dividing up the particle’s path into segments confined to a single cell, and 
treating each segment separately, using the method just described. 

The treatment of the electromagnetic fields at perfectly conducting conformal 
boundaries is straightforward. Only fields actually on the surface need to be 
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modified. Consider a conductor conformal with x (i.e., x =const). After the 
standard field advance has been made, we perform a boundary correction, setting 
E,, E,, and B, equal to zero on the surface. Similarly, after the standard current 
density accumulation, we set JY = 0. With these modifications, charge conservation 
and Gauss’ Law are no longer satisfied at full grid points on the conductor, but this 
is not a problem. Charge needs to be rigorously conserved only at interior grid 
points. The treatment of particles which cross the boundaries will be discussed 
below. 

III. MODIFICATIONS FOR THE TREATMENT OF SLANTED SURFACE CELLS 

In this section, we describe the changes made to handle slanted surface cells, 
excluding the particle creation model. The principal changes are in advancing the 
electromagnetic field, computing charge and current densities that satisfy charge 
conservation, destroying particles that pass through these surfaces, and averaging 
the electromagnetic fields for the particle pusher. 

We first consider the modifications for the electromagnetic field calculation. As 
with conformal conducting boundaries, to correct the field solver at a slanted 
surface, only fields actually on the surface need to be modified, i.e., E, and B,. 
To satisfy E,,, = 0, we set E, = 0. For B, in the center of full grid cell (i, j) in 
Fig. 1, we apply the integral form of Faraday’s law to the triangular loop formed 
by the vertices (x{, J$+ ,), (x{+ i, J$+ i) and (x{+ 1, y,‘), to give the simple rule for 
advancing this field in time by 6t 

(9) 

Strictly speaking, this increment is correct to second order in 6x and Sy only if the 
grid point at which B, is located is exactly at the center of the full grid cell. 
However, the additional errors incurred in simply using Eq. (9) for a nonuniform 
grid are small, and do not warrant a more elaborate procedure. 

We next consider the charge and current densities. The treatment of slanted 
surface cells is a natural geometric extension of the area weighting scheme [8] 
illustrated in Fig. 2b. The particle contributes to the charge density only at the three 
vertices in the vacuum half of the cell. The triangular area of the vacuum half of the 
cell is divided up into three subtriangles, based on the particle’s location, and the 
fraction of the particle’s charge assigned to each charge density cell is proportional 
to the area of the sub-triangle opposite that corner. This leads to the particle 
weights 

wii+l jzw;-FY , . 
n “- 

wp,i, j+ I = wpx 9 (10) 

wgi+l j+I=w~,‘-w~~,> . . 



150 T. D. POINTON 

where w;~* and w;;~,* are defined in Eq. (1) The “rectangular” weights in a vacuum 
cell and the “triangular” weights for a slanted surface cell vary continuously as a 
particle crosses the cell boundary between the two. 

For the current density, the perfect conductor boundary condition forces J,,, and 
JV,O to be zero. The continuity equation at the three vacuum corners of the slanted 
cell gives three equations for the two unknown current terms Jz,:j/:, and J;,::‘f!,. 
As in the rectangular case, these equations are not independent. There are only two 
independent equations, and it is easily verified that continuity is satisfied at all 
points with the current densities 

(11) 

Comparison of Eq. (11) with Eqs. (7) and (8) shows that these terms are almost 
identical to the current density terms for a vacuum cell, the only difference being 
that the transverse weighting factors are set to zero for the edge below the surface, 
and unity for the edge above, independent of the particle location or rectangular 
path chosen. 

When a particle penetrates a conductor or the edge of a simulation region 
following the particle push at a given time step, it is immediately removed from the 
system and makes no contribution to the new charge density pn+ ‘. However, as the 
particle moves along its path from time step n to n + 1, motion along the portion 
of the path within the vacuum cell makes a contribution to J”+ “* that must be 
included to conserve charge. In the old version of MAGIC, only conformal boun- 
daries were encountered, and all contributions to the current density from motion 
outside the system were simply confined to edges of “destruction” cells, i.e., cells 
immediately below the conducting boundary. The unwanted current contributions 
could be removed with a simple boundary correction on these cells, and no trunca- 
tion of particle paths was necessary. This simple approach can no longer be used 
when slanted surfaces are present. There is no way to separate contributions to the 
current density from motion in the vacuum and destruction halves of a slanted 
surface cell. The only way to correctly compute the current is to explicitly truncate 
the path at the slanted surface. Furthermore, because of complications near 
conformal/slanted corners, it is not worth the trouble of using the old algorithm on 
conformal surfaces. Thus all particle paths which intersect boundary surfaces are 
truncated at the intersection point. These particles are then destroyed after their 
contribution to the current density is computed. 

Finally in this section, we describe the modifications made for the field averaging 
used by the particle pusher. The staggered spatial locations of the electromagnetic 
fields are convenient for advancing them forward in time. However, it is incon- 
venient to work directly with these fields for the particle pusher, since several sets 
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of weighting coeffkients would be required for each particle. Instead, once the fields 
have been computed on the spatial grid, “average” fields are computed at the full 
grid points. This allows the charge density weights to be used to interpolate all 
fields from the grid to each particle, using Eq. (4). The particles are pushed using 
rectangular weights in vacuum cells and triangular weights in slanted surface cells. 

Figure 4 shows the fields on the electromagnetic grid which contribute to the 
average fields at grid point (i, j). We first consider the case of a uniform grid as 
shown here. The average electric field must satisfy E,,, = 0, so E z,“V E 0. Eyv and 
E;yij are computed from E,, ji, E,, i _ r,, + , , E,,, ii, and Ey,i + r,+ r, which all lie on the 
line passing through the points (x!, y:) and (xf, yl/). This line, loosely referred to 
as the line “half a cell above the slanted surface,” has slope ~Sy~/cjx~ and is located 
at height 

6h=$bx;6y,h((6x;)2+(6yy-“2 (12) 

above the surface. The point P in Fig. 4 is the intersection of this line with the 
normal to it that passes through (x{, y,‘). We first compute values of E, and E, 
at P, using linear interpolation from the two nearest components on the line half 
a cell above the surface 

d d 
EAp= (d,, f2d,,) E.+ I,j+ I + (d,, ;d12) Ex,,, 

d d 
E?..= (d2, ;d2,) E,,, + (d,, jld,,) -%i+ ,,,-I > 

(13) 

where d,,, d,,, d,, , and d22 are the distances shown in Fig. 4. While this averaging 

FIG. 4. Computation of the average fields at a slanted surface. Only the field components which are 
explicitly labelled contribute to the average fields at full grid point (x,/, yi). 
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may seem somewhat arbitrary, it is actually the degenerate case of triangular area 
weighting when the point being weighted lies on the diagonal of the cell. E,,, given 
by Eq. (13) is precisely that obtained from E., ,!,, E,, _ ,,,+, , and E,,i,,+, using 
triangular area weighting. Thus this field weightmg is consistent with the particle 
weighting. The normal field at P is obtained from E,,. and E,,. and extrapolated 
down to the surface by application of Gauss’ Law 

E n, sur = -Cl,. - pii ah/c,,. (14) 

Eyg and Ezyq are then defined as the components of E,,,,,. For a nonuniform grid, 
we use exactly the same procedure. The distances ah, d, i , d,, , d,, , and dz2 are all 
defined in terms of 6x: and Syf as if the grid were uniform, and the point P is 
defined as before. Although the grid points at which the electric field components 
are defined may lie slightly off the line half a cell above the surface, the additional 
errors this incurs are negligible in practice. 

The boundary condition for the magnetic field is B,,,, = 0. B$ is computed from 
Bz,i- I,/ and B,,i, j-, using linear weighting along the slanted surface, in a manner 
very similar to the way Er,P and EV,P are computed in Eq. (13). The tangential 
component of B is in the x - y plane on the surface is computed by first computing 
this component at the point P. First, Bx,p and B,,. are calculated in the same way 
as E,,. and Kp, respectively. The resulting value of B,an,P computed from these 
components is then is extrapolated down to the surface neglecting corrections due 
to Jz in Ampere’s law; i.e., we simply set Btan,+ = Btan,P. 

IV. FIELD EMISSION MODEL 

The details of field emission of charged particles from an electrode are very com- 
plicated [9]. However, most are on length scales too small (- 10e4 cm) to be 
resolved with typical cell sizes used in MAGIC. Instead, only the macroscopic 
effects of field emission are simulated. These can be summarized by the following 
two-step process. Once the normal electric field exceeds a threshold breakdown field 
E N 10’ V/m, a dense plasma quickly forms on the conducting surface. Subse- 
qt&t particle emission is from the outer surface of the plasma. The magnitude of 
the emitted current is space-charge limited, i.e., enough current is drawn to force 
the normal electric field at the plasma surface to vanish. Since the plasma can only 
move away from the surface at the ion sound velocity, it stays very close to the 
surface on time scales typically simulated with MAGIC (- l&100 ns). 

The new field emission algorithm is based on a simple application of Gauss’ law 
to cells on the surface of a conductor, as done in some previous work on field emis- 
sion models [3, lo]. Assuming that the normal component of E is zero on the con- 
ductor surface, the surface integral of E over the remaining faces of a surface cell 
gives how much charge is required in the cell to actually force this condition. The 
difference between this charge and that currently in the surface cell is how much 
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needs to be created. New particles are created to supply this charge, assuming it has 
the same sign as the species being emitted. These particles are emitted directly from 
the conductor surface; no explicit treatment of the plasma near the surface is made, 
since its thickness is assumed to be very small compared to a cell size. In MAGIC, 
a threshold electric field can be defined to disable emission until the normal field 
first exceeds it. However, rather than trying to model the breakdown process more 
carefully, this is primarily a numerical switch to avoid creating and pushing low 
weight particles early in a simulation (MAGIC’s adjustable particle weights can be 
arbitrarily small). Typical simulations involve driving a system with an input wave 
that ramps up linearly in time to some value and is constant thereafter. In this case, 
the final equilibrium state is independent of the code’s breakdown threshold as long 
as this field is much less than the final vacuum field strength of the input wave. 

To construct general emission surfaces, we use live types of emission cells, as 
shown in Fig. 5. Each cell type has four possible orientations. The shape of the 
emission cells is essentially arbitrary and is determined as follows. First, the natural 
definition of an emission cell at grid point (i, j) on a conformal boundary is the 

(d) (el 

FIG. 5. The five types of surface cells used in the particle emission model: (a) conformal 
surface; (b) slanted surface; (c) conformal/conformal corner; (d) conformal-x/slanted corner; and 
(e) conformal-y/slanted comer. 
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charge density cell at that point. On a uniform grid, as shown in Fig. 5, the other 
cell shapes follow as logical, but arbitrary, choices that connect smoothly to the 
conformal surface emission cells. To generalize to a nonuniform grid, each shape is 
defined as in the uniform case, but with the local values of 6~; and 6~;. This means 
that slanted surface cells may not line up exactly, but this is another additional 
small error incurred in treating slanted surfaces on a nonuniform mesh. In practice, 
no problems have been seen with this approach. An emission surface is built up 
as an oriented contiguous chain of these basic cell types. We define the positive 
direction of traversal as the one going around the conductor counterclockwise 
(equivalently, if one goes around the outside of the conductor in the positive 
sense, the conductor is on the left). With these cell types, most types of emitting 
conductors can be simulated directly. 

The creation algorithm must compute how much charge to create in the cell (if 
any), and the coordinates, momenta, and charges of the created particles (recall 
that MAGIC must explicitly define the particle charges). Furthermore, the electric 
field components near the surface must be modified when particles are created to 
ensure that no interior grid point is a source of charge. We now consider these 
problems in more detail. 

We consider an arbitrary emission cell, labelled with index 1, located at grid 
location (i, j). The amount of charge to be created in this cell, Qc,,,, is computed 
by applying Gauss’ law 

Eo j E.dA=f Pdv+Q,r,,> / I (15) 

where E and p are the fields before creating particles, and the electric field surface 
integral is only over the outer surface of the cell. Strictly speaking, the charge- 
conserving field corrections for the created particles should be included in Eq. (15), 
but this is a minor correction which can be neglected. The surface integral is 
computed as 

f E.dA= 2 E,,,,AA,*, 
I s= 1 

(16) 

where n, is the number of segments on the outer surface (1 for a conformal or 
slanted cell, 2 for a corner cell), AA, is the surface area of the sth segment of the 
outer surface, and En,,s is the outward pointing normal electric field at the center 
of the sth segment. The charge density integral is defined as 

f p dV= Ql= C Viy,Pi+r,,,+,‘, I i',j' 

(17) 

where Vi,, is the volume overlap of creation cell 1 into charge density cell 
(i + i’, j +j’). For conformal surfaces and conformal/conformai corners, these 
calculations are trivial. The normal field terms in Eq. (16) come directly from the 
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grid, and we only have the center term (i’ = 0, j’ = 0) in the sum (17). For example, 
for the conformal/conformal corner of Fig. 5c 

Qrr,, = Q,(E,,~ “y; + E,,, Sx;, - pv Bxf’ dyi”. (18) 

The slanted cell calculation is illustrated in Fig. 6. For the surface integral of the 
field, the normal field at the center of the outside face of the cell is obtained from 
the four field components shown, in exactly the same way as E,,, in the average 
field calculation described in Section III. The slanted surface cell has triangular 
volume overlaps in the four adjacent charge density cells, but only the V,, I’,,, 
and V,, terms are non-zero. The extension to the treatment of slanted/conformal 
corners is straightforward. 

In MAGIC, the user specifies how many particles to create in each cell. Regard- 
less of cell type, all particle coordinates are generated from two parameters--s,,,,, 
a dimensionless fraction from zero to one representing the transverse location of the 
particle within that cell, and 6/z, the normal height from the surface at that trans- 
verse location. The user specifies whether these parameters are chosen randomly or 
systematically. For conformal and slanted surface cells, stran is simply proportional 
to the transverse distance from the leading edge of the cell (this edge is unique since 
we sweep through the cell with the positive direction of the traversal). At a corner, 
a smooth transition of coordinates and momenta from one face of the corner to the 
other is accomplished by effectively emitting the particles from the surface of a 
hyperbola fitted to the corner. Figure 7 shows a hyperbola fitted to a corner of 
angle 28,, in which one of the asymptotes is the x-axis. From a standard representa- 

EY 

FIG. 6. Calculation of a charge to create in a slanted surface cell. The four electric field components 
labelled with arrows are used for the normal field. The amount of charge already in the cell is computed 
from the charge density at full grid points (i, j), (i+ 1, j), and (i, j+ l), using the volume overlaps V,, 
V,,, and V,,,, respectively. 
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tion of a hyperbola in polar coordinates [ 111, 
representation of this hyperbola, 

we derive the useful parametric 

r(d) = 
a tan* B0 

l+cos8+sin8tan0,’ 

x(e)=rc0se-a, 

y(e) = r sin 8 -a tan e,, 
(19) 

where r and 8 are the radius and angle relative to the hyperbola focus, and a is the 
distance of closest approach of the hyperbola to the corner vertex, as shown. This 
representation is valid in the range 28,-n < 0 < rc. The outward pointing unit 
normal to the hyperbola is given by 

i-i(e) = N,( 1 + cos 8, sin 8 + tan e,), (20) 

where No is a normalization coefficient. To tit such a hyperbola to an emitting 
corner cell, one free parameter 8, is fixed by the angle of the corner. The other 
parameter a is adjustable. For small a, the hyperbola is fitted tightly to the corner, 
with the slope very close to that of each surface at the ends of the cell (i.e., the parts 
of the cell furthest from the corner). However, points equally spaced in 8 become 
bunched at the corner itself. Although this can be used beneficially to model 
enhanced emission at a corner, if a is too small all the particles will be emitted 
close to the corner itself. On the other hand, if a is large, the bunching at the 

FIG. 7. Hyperbola fitted to a corner of angle 20, at the origin. The distance of closest approach to 
the origin is a, and the distance from the origin to the focus, F, is c = ajcos BO. 
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corner is reduced, but the difference between the slope of the hyperbola and the 
corresponding surface at the ends of the cell increases. In practice, the best 
compromise appears to be for a being 0.2 times the length of the diagonal of the 
full grid cell at the corner. A particle is emitted from a point on the hyperbola 
corresponding to O(s,,,), along the ray parallel to the normal at this point and at 
a height 6h above the point at which this ray intersects the actual conductor 
surface. 

The momentum direction of each created particle is well defined, since it is 
emitted with momentum normal to the surface in conformal and slanted surface 
cells, or along the normal to the hyperbola in corner cells (with a possible thermal 
spread). However, the momentum magnitude is a free parameter. At a truly space- 
charge-limited emitting surface, the normal electric field is zero, and particles are 
emitted with zero velocity, but leave the surface because the field gradient is 
singular. In a PIC code, the field gradient is necessarily finite, so particles must be 
created above the surface with a non-zero velocity to enter the system. Currently, 
the height and velocity are input directly by the user. Attempts to automatically 
compute these parameters have met with limited success. It is difficult to develop 
a general model which can handle the wide range of surface conditions for which 
this code is used. 

We next consider the computation of particle charges. The amount of charge to 
create in the cell Qcr,/ is given by Eq. (15), while the number of particles and their 
locations are determined as described above. We must compute the magnitude of 
the particle charges to create the correct amount of charge in each cell. Because of 
the charge weighting scheme used in MAGIC, a particle created at a surface cell 
actually contributes charge to either three or four grid points. In particular, this 
particle will contribute a charge to one of the two neighboring emitting surface 
cells. If the charge to be created in each surface cell is different, this coupling 
between nearest neighbors must be included to force the normal field at the surface 
to vanish exactly in each cell. 

The emission surface has N, cells Cl, with charge QEI,, to be created in each cell. 
This charge is to be supplied by Np particles created over the surface, with Np,, par- 
ticles in cell C,. Particle p in cell C, has charge qlp, and contributes a fraction of 
this charge A,, to cell Cl+,,, . These fractions are the same charge density weighting 
factors described previously, but with indices specific to the cells on the emitting 
surface. With linear weighting, A ,mp = 0 for /ml > 1. We arbitrarily choose one 
charge from each cell, label it qrl, and define weights wIp = qlp/qll. These weights 
are defined externally by the user at the start of the problem. Typically, all particles 
created in a cell will have the same charge, so that wrp = 1; but for certain problems, 
it is convenient to allow the more general case. The total charge in cell I due to 
particles created in cell I+ m is Q,m = S,,,,q,+m,l, where 

Np,l+m 
S,,n= c A,+,,,-,,pw/+m,p. 

p=l 

(21) 
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Summing up the contributions of the three cells which contribute charges to cell I 
gives the linear equations 

~,,~,q~~,.,+~,,oq/,r+~,,+,q,+,,,=Q,.,,,. (22) 

Equation (22) is a simple tri-diagonal linear system for the N,. unknowns q,1, which 
can be solved very rapidly. The other particle charges are then computed using the 
known weights wlP. 

In addition to creating a charge in neighboring surface cells, a particle created in 
a surface cell contributes a charge to interior charge density grid points next to the 
surface. If Gauss’ law was satisfied before this charge was introduced, it is clearly 
not satisfied afterwards, so we must correct the electric field near the surface after 
the particles have been created, so that Gauss’ law is again satisfied at all interior 
points. In both the rectangular and triangular weighting schemes, a particle right 
on the surface does not contribute a charge to the interior points of the cell. We can 
therefore satisfy Gauss’ law exactly by the following conceptual two-step process. 
We “create” the particle on the surface and then move it up to its actual creation 
point in time 6t with the standard algorithm. The charge-conserving property of 
the current density algorithm provides exactly the required field corrections. In 
practice, these field corrections are computed directly in the particle creation 
routine. 

V. RESULTS 

The first series of tests were on simple one-dimensional systems-the monopolar 
and bipolar planar diodes. Two parallel infinite plane conductors are separated by 
a distance d, and the potential difference between the two is held at VO. In the 
monopolar case, only the cathode emits electrons, while in the bipolar case, ions are 
also emitted from the anode. These problems have simple solutions for space- 
charge-limited emission equilibria [12], and simulations of them give good 
quantitative information on the code’s performance. Extensive tests [7], using both 
conformal and slanted surfaces, provided confidence that the code was working 
well. 

Results of the monopolar planar diode using slanted surfaces are presented 
here. The simulation geometry is shown in Fig. 8. This geometry requires the 
grid to be uniform. The “shifted” periodic boundaries enforce the condition, 
F(x + L,, y - Ly) = F(x, y), for any field F. Furthermore, when a particle leaves the 
right-hand boundary, its coordinates are shifted by the vector (-Lx, Ly). The 
equilibrium electron current is [12] 

ze 112 ~312 

j,+ & L?-- 
0 d2 . (23) 

Three sets of simulations were performed, each one with fixed d, V,,, and slant 
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FIG. 8. MAGIC simulation geometry used for the slanted surface Child-Langmuir tests. The slanted 
surfaces are perfect conductors. The left and right boundaries are periodic boundaries, which require a 
buffer cell on each side of the simulation system. Particles are emitted as shown. 

angle. The three angles used corresponded to the cell sizes 6x = 6y, 6x = 2 by, and 
Sx = 4 Sy. The three systems simulated had the parameters shown in Table I. 

For each system, three simulations were performed with the number of cells 
across the gap N being 20, 40, and 80. The Courant condition on the time step [S] 
requires bt a l/bx a l/N. Particles were created at every time step, so the total run 
time was proportional to N2. The simulation results are shown in Table II. These 
results show that the slanted emission model is fairly insensitive to slant angle, 
at least over the range covered here. The error in the equilibrium current is 
comparable to the results for conformal surfaces. 

Several real experimental devices have been simulated with the code. No major 

TABLE I 

The Three Monopolar Diode Parameter Sets 
Used in the Slanted Surface Child-Langmuir 

Tests 

WbY 4m-d V&V) j,,(MAm-*) 

1 1.414 50 13.0’ 
2 1.789 50 8.14 
4 1.940 50 6.92 

581/96/l-11 
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TABLE II 

Simulation Results of the Three Slanted Surface Monopolar Diode Con- 
figurations Shown in Table I, with 20, 40, and 80 Cells across the Gap 

Sx/Sy N LWAmm2) j,(MAm-2) j(MAm-*) % error 

1 20 9.64 9.67 13.7 5.0 
1 40 9.38 9.37 13.3 2.0 
I 80 9.26 9.28 13.1 0.8 
2 20 3.81 7.63 8.53 4.8 
2 40 3.71 7.40 8.28 1.7 
2 80 3.66 7.32 8.18 0.5 
4 20 1.75 7.01 7.23 4.4 
4 40 1.71 6.83 7.04 1.8 
4 80 1.69 6.75 6.96 0.6 

problems have been found, though it can be quite difficult to quantitatively evaluate 
the results, since the experimental data is sensitive to many factors, some beyond 
the scope of MAGIC. As an illustration of these full two-dimensional simulations, 
we present results of a simulation of the HELIA diode [ 131 with a tapered cathode. 
This system is shown in Fig. 9. In this simulation, only electrons were emitted. The 
input voltage pulse was linearly ramped from zero to its maximum value of 4 MV 
in 1 ns and held constant for the remaining 9 ns of the simulation. The equilibrium 
voltage and total current were 3.2 MV and 150 kA, respectively, in good agreement 
with experiment. Figure 10 is an electron trajectory plot after 5000 time steps, at 
t = 10 ns. The fact that the trajectories of tht? electrons leaving the cathode are still 
laminar is a strong indication that there are no problems with the treatment of the 
boundaries. The greater density of simulation particles at the corners is due to the 
fact that four times as many particles are emitted from corner cells, to more 

ANODE 
19, . 

“0 20 32 38 
2 km)- 

FIG. 9. Tapered cathode HELIA diode configuration used for the simulation described in Section V. 
The top and right boundaries are the perfectly conducting anode. The gap between the anode and 
cathode on the left edge is open to the propagation of electromagnetic waves, The input driver wave, 
incident from the left, and scattered waves propagating backwards from the right, pass through this 
boundary. 
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FIG. 10. Electron trajectory plot of the HELIA diode simulation at t = 10 ns. 
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accurately model the behavior there. To verify charge conservation, a diagnostic 
was added to monitor (V . D - p) on the grid and also the time history of the 
quantity 

~Qmax = 
max{V.D-p} 

max{d ’ 

where max{ X} is the maximum value of x over all full grid points. This run was 
made on a machine with 14 digit precision, and after 5000 time steps, de,,, N 
2 x lo- 11, which is strong evidence that a charge is being conserved to machine 
roundoff levels. Finally, the radial profile of the current at the anode shows that 
half the current is within a disk of radius 6 cm, in fair agreement with experiment. 

VI. SUMMARY 

The tests indicate that the new slanted conducting surface and field emission 
models are working well. The slanted surface Child-Langmuir tests indicate that 
emission from slanted surfaces results in errors comparable to emission from con- 
formal surfaces, at least for that problem. Finally, the HELIA diode simulation 
more fully illustrates the code’s capabilities. Electromagnetic boundary conditions 
and particle emissions are modeled at slanted surfaces and corners in a complex 
geometry, while conserving charge to within machine precision. 
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